
1.
1.

2.

1.
2.
3.

4.

5.

2.
1.

1.

4530 Week 12: Estimation, Planning, Teams

Agenda:
Administrative/logistics:

Project deliverables + demo [See website: https://
neu-se.github.io/CS4530-CS5500-Spring-2021/
assignments/project-deliverable] 
Exam [See Piazza: https://piazza.com/class/
kjt1yiu0x646wy?cid=627 ] 8-10am on 4/28 (Time 
set by registrar, not me)

About 6 questions, some multi-part
No writing code, some reading code
Open book/open notes/Open linked 
references from the course website - no 
lockdown browser etc.
Review suggestions: Make sure to have 
watched all of the lessons + be familiar with 
content from the review in-class, look over 
week-by-week learning objectives
If unable to take exam due to time-zone 
issues, please contact me directly, ideally 
take during Wand/Boyland times
Wand: 4/22 6:00-8:00pm
Boyland: 4/23 1:20-3:20pm

Review Lessons 12.1, 12.2
Q: What projects have you been involved in 
planning - in terms of estimating how long it will 
take?

From work: sprint planning with story points

https://neu-se.github.io/CS4530-CS5500-Spring-2021/assignments/project-deliverable
https://neu-se.github.io/CS4530-CS5500-Spring-2021/assignments/project-deliverable
https://neu-se.github.io/CS4530-CS5500-Spring-2021/assignments/project-deliverable
https://piazza.com/class/kjt1yiu0x646wy?cid=627
https://piazza.com/class/kjt1yiu0x646wy?cid=627


2.
2.

1.
1.

2.

3.
3.

1.
1.
2.

3.

4.

2.

4.

1.
2.
3.

5.

From work: Agile cards (planning poker)
Q: How good do you think your past estimates 
have been? (Over/under estimate)?

Experiences:
At established co-op: “pretty good”, at 
startup: “not so great - under-estimating”
“Always some bug that comes up” (Can try 
to build this in, but hard!)
Writing tests takes longer!

Q: Do you ever time-box homework assignments 
(say “I will only put 10 hours into this”)

Experiences:
“That’s the dream…”
“Yes, with essays” (acceptance criteria is 
not well-defined)
“No because there’s a repercussion if I dont 
get a good score” (acceptance criteria is 
quite clear, want to meet it)
If you wait to start until 8 hours before 
deadline…

Compare to software projects - can carry-over 
tasks to future sprints

Q: What do we do in agile if we didn’t finish 
everything at the end of the sprint?

We move to next sprint
Break up the task
Be open about what happened - try to get 
help, COMMUNICATE

Brooks’ Law: “Adding more developers to a late 
project just makes it more late”



1.
1.
2.

3.
1.

2.
2.
1.

2.

3.

6.

1.
1.

2.
3.

2.

Why?
Getting people up to speed
Different people have different experience 
levels
Software process scaling limitations

Monolithic vs micro service application 
architecture
“Too many cooks spoil the broth”

How do we make this better?
Break up team when project gets too big 
(“Two pizza teams”)
Documentation/knowledge sharing - 
Effectively combine synchronous and 
asynchronous communication
Limit interfaces between teams to limit 
communications scaling problems

Q: Should we always use this agile approach? 
(Sprint-based planning, updating estimation as 
we go)

“NO”
Handling bugs/incidents that arrive in an 
unpredictable way should be handled 
differently than new features that have 
business purposes/deadlines
Short-term project (?)
Big projects on a deadline where failure is 
not an option - might need something a bit 
more hybrid between waterfall/plan in 
advance + agile/plan as you go

Caution: Buzzword bingo, getting lost in the 



2.

7.

1.
1.
2.
3.
4.
5.

2.

1.
2.

1.

1.
2.

3.

1.

2.

details of your “scrum master” spending hours 
telling you how to be agile and have a standup 
meeting

Q: What kinds of metrics are available to us in 
software engineering?

Quantitative metrics:
Sprint velocities 
Code coverage by tests
Build success
Bug-related stuff
Cyclomatic complexity/other measures of 
code complexity

Don’t use quantitative metrics in performance 
review

Might not be including all/right metrics
Impossible to quantitatively measure 
everything

McNamara Fallacy - end up making bad 
decisions

Standardized test scores
Economics - unemployment rate, GDP

Team meetings

April 8, 2021 Course Meeting

Agenda:
Project deliverables update - page limits now up for 
documentation (note - these are maximum lengths, 
not suggested lengths)
Logistics for next week (No class on 12th), April 19th



3.
1.

1.

2.

1.

2.

1.

3.

3.

1.
2.
3.

4.
1.

1.

Lessons 12.3, 12.4 review
Q: Have you experienced a team project that went 
well? That is - good project output, plus good 
team dynamic. What went well and why?

Well-planned projects where tasks are broken 
down into fine-grained increments and 
assigned help - and willingness to adapt 
[shared understanding of what needs to be 
done and by whom]

Q: Alternatively - what goes wrong? Where do 
you find friction in a team project?

“So many groups where one person…. Just 
doesn’t do the work?”
“So many groups…. Where I’m not allowed to 
do the work? (Where someone just does it all)”

Balancing act: Do I just do this myself, or do 
I help someone else to do it?

Rush to get things working, no accountability 
for whose job it is to test/ensure quality of that 
code (if this isn’t planned)

Three pillars of functional teams (Debugging 
Software Teams)

Humility
Respect
Trust

Focusing on project end goals vs team end goals
Should I finish a project myself, or should I wait 
for my teammate/help my teammate to finish 
what they were supposed to do?

Ideas…



1.

2.

3.

1.
2.

2.

3.

1.

2.
3.
4.

5.

6.

If it’s due soon, maybe we need to do it 
ourselves - especially if they seem busy 
or unresponsive
Especially if one of your responsibilities is 
mentorship/learning, then this it’s 
probably important to have a focused 
plan for “transferring that knowledge”
Depends on how communicative that 
teammate has been

Teammate who is “trying”
Teammate who is “not trying” - Not 
doing work, but ALSO not 
communicating

Humility on the part of you, the person who 
knows how to do it, and trust from your 
teammate who is not
“Man you totally got the control flow wrong 
on that method there. You should be using 
the standard Visitor pattern like everyone 
else”

Don’t make it personal - remove the “you” 
here
Don’t start with “Man”
Don’t shame with “everyone else”
“Should be” - don’t demand a specific 
change
“Wrong” - is it black and white what is 
right/wrong here? 
Alternative: Explain why that method 
won’t work and a solution , “I recommend 



6.

7.
1.
2.

5.
1.
1.
1.
2.

2.
3.
1.

2.
1.
2.

6.

1.

1.
1.

2.

1.

using the visitor pattern instead” ?
“I feel…”

I feel like the method is a bit confusing
I felt confused when reading this 
method.

Post-mortem reviews
Q: Why do a post-mortem review?

Learn from mistakes
What happened?
What did we do? What happened after 
we did those things? What were we 
expecting?

Avoid repeating them
Example: Post-mortem after major bugs

“We need to add monitoring for X”
Blameless post-mortems

Avoiding “Name, blame and shame” cycle
https://aws.amazon.com/message/41926/ 

Engineering productivity - how to decide how to 
change processes

Example: “We want to change all development 
from JavaScript to Haskell… code will be much 
better with fewer bugs, because of the design 
of the language” - how do we figure out if this 
is the case?

Pilot study?
Look at errors

Framework to design a study - Goal/Signal/
Metric

Goals:

https://aws.amazon.com/message/41926/


1.
2.
3.

4.

5.

2.
1.
2.
3.

3.
1.

2.
4.

Quality of code
Attention form engineers (distraction)
Intellectual complexity (is this harder 
than it needs to be/adding speed 
bumps)
Tempo and velocity (how quickly we 
do things)
Satisfaction (how happy are 
engineers?)

Signals - what we want to measure
Is the code more readable?
Is the code more maintainable?
Are there bugs?

Metrics - things we actually measure
Consider both qualitative + quantitive 
metrics

This is hard, ideally do this with sociologists
Team meetings


